

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Anonymization toward De-identifiction (deid)

This Python module is intended for basic coding of medical images, which means “cleaning” image headers and pixel data, and integrating with your own functions to replace with anonymous identifiers. Per HIPAA, this process is technically called “anonymization,” meaning we did our best effort. What this module does not do:

	does not provide a workflow manager to perform these actions. If you need one, see [sendit](https://www.github.com/pydicom/sendit) or [dicom-database](https://www.github.com/pydicom/dicom-database) use deid for this task.

	does not implement any custom API calls to retrieve identifiers from some specific database. If you are from Stanford and looking for those tools, [see here](https://www.github.com/vsoch/som).

What this module does do:

	Anonymize header data based on a specific logic of replacing, blanking, removing, or some custom function (e.g., “replace field X with item Y,”)

	Pass images through a filter for quarantine based on header logic, and if pixel coordinates are available, can black them out.

	For each of the above, you can use defaults (blacklist, whitelist, graylist), or create your own customized logic.

	provides functions for developers, and executables and containers for users.

For dicom data, we use [pydicom](https://www.github.com/pydicom/pydicom) and for nifti we (will) use [nibabel](http://nipy.org/nibabel/).

Getting Started
If you are not a developer, or interested in getting started with using and understanding the software, you should start out by reading our [getting-started](getting-started.md) guide. If you are a developer and are interested in using deid to implement a custom pipeline, see the following sections:

Dicom

	[Loading Data](loading.md): The starting point for any de-identification process is to read in your files from the system. We provide examples of how to do that.

	[Configuration](config.md): You next want to tell the software how to handle various fields. If you don’t have a good sense, we provide a default configuration that returns fields for you to inspect, and removes them from the data.

	[Get Identifiers](get.md): A request for identifiers is a get, meaning it will extract fields from the data, and give you a data structure that you can then (optionally) add to in the case of wanting to substitute any fields.

	[Clean Pixels](pixels.md): Before you scrape headers, you might need to use them to flag images that have burned in pixel annotations, and deal with them appropriately.

	[Put Identifiers](put.md): put corresponds to the anonymization step. This is when you give your (possibly changed) request from get to a function to de-identify the data.

	[Developer Notes](developer.md): explains how a module (eg, the folder dicom) is set up, and you should follow this format if you want to add a new module.

	## Dicom Tools
	
	[Tags](tags.md): A few helpful functions for searching and filtering tags.

 # Deid Client

After you install deid, in either of the following ways:

```
# stable
pip install deid

# development
pip install git+git://github.com/pydicom/deid
```

You will notice a command line application has been placed in your bin:

`
which deid
/home/vanessa/anaconda3/bin/deid
`

Note @vsoch thinks this client could be better organized (with regard to usage and commands) please [provide feedback]
(https://www.github.com/pydicom/deid/issues) as you test these functions! The primary use of deid by the developers group has
been via functions in Python, so the client might be neglected.

Usage
If you run the executable without any arguments, it will show you it’s usage:

```
deid
usage: deid [-h] [–input FOLDER] [–version] [–print] [–format {dicom}]


[–quiet] [–outfolder OUTFOLDER] [–overwrite] [–deid DEID]
[–ids IDS] –action {get,put,all,inspect}




deid: error: the following arguments are required: –action/-a
```

It’s telling us that it wants an action, which can be one of {get,put,all}, where “get” corresponds to getting identifiers from a dataset, “put” corresponds to doing the replacement, and “all” means you want to do both at the same time (meaning you won’t intervene between the calls to customize any of the replacement actions. Let’s walk through the simplest use case, giving an action without any other arguments, which will use the default dataset provided (a subset of [dicom-cookies](https://pydicom.github.io/dicom-cookies)).

Inspect
Currently, inspect is simply going to look at header fields and try to guess if there are burned pixels in the image. I am not convinced this is robust - the filters I am using are from [MIRC CTP](https://github.com/johnperry/CTP/blob/master/source/files/scripts/BurnedInPixelsFilter.script), and seem to generally look for:

	if the field Burned Annotation is set to Yes

	if there is any indication of a SAVE

	if a secondary device was involved

To inspect a dataset, call the –action (or -a) command with inspect:

`
deid --a inspect
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
DEBUG image4.dcm header filter indicates pixels are clean.
DEBUG image2.dcm header filter indicates pixels are clean.
DEBUG image7.dcm header filter indicates pixels are clean.
DEBUG image6.dcm header filter indicates pixels are clean.
DEBUG image3.dcm header filter indicates pixels are clean.
DEBUG image1.dcm header filter indicates pixels are clean.
DEBUG image5.dcm header filter indicates pixels are clean.
`

or specify your own dataset with –input/-i

`
deid --a inspect -i /home/vanessa/Desktop/test/su/
DEBUG Found 62 contender files in
DEBUG Checking 62 dicom files for validation.
WARNING Cannot read input file /home/vanessa/Desktop/test/su/__index.xml, skipping.
Found 61 valid dicom files
DEBUG FO-4893011557773677292.dcm header filter indicates pixels are clean.
WARNING FO-7672974892203473954.dcm header filters indicate burned pixels.
WARNING FO-7344077592634450132.dcm header filters indicate burned pixels.
DEBUG FO-2297306028740147772.dcm header filter indicates pixels are clean.
WARNING FO-6958553590975910128.dcm header filters indicate burned pixels.
DEBUG FO-3801449217794418870.dcm header filter indicates pixels are clean.
DEBUG FO-3156845437646327300.dcm header filter indicates pixels are clean.
DEBUG FO-7969108085464715668.dcm header filter indicates pixels are clean.
DEBUG FO-5786379487348112355.dcm header filter indicates pixels are clean.
DEBUG FO-3565568840462998171.dcm header filter indicates pixels are clean.
...
`

Get
Let’s specify –action as get. This means that we will use a demo dataset, and the ids (a data structure saved in compressed python file called a “pickle”) will be saved to a temporary directory.

`
deid --action get
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
GET and PUT identifiers from dicom-cookies
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG Found 27 defined fields for image4.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Found 27 defined fields for image2.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Found 27 defined fields for image7.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Found 27 defined fields for image6.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Found 27 defined fields for image3.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Found 27 defined fields for image1.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Found 27 defined fields for image5.dcm
Writing ids to /tmp/tmpv3h9b11t/deid-ids.pkl
`

Pickle was chosen because what appear as strings are actually data structures that write nicely back into dicom (or other) files. It also is likely the case that to save and tweak these identifiers, you will likely need to load them programmatically anyway, and we are doing a good deed for the world to encourage using Python :).

Customize Message Level
Also by default, we give you debug output. If you want to silence the output, then you can add –quiet:

```
deid –action get –quiet


deid –action get –quiet




No input folder specified, will use demo dicom-cookies.
Found 7 valid dicom files
GET and PUT identifiers from dicom-cookies
Writing ids to /tmp/tmp6sywao9a/deid-ids.pkl
```

Note that you are actually receiving the level INFO, because otherwise you might not know where the file was saved. If you really want to tweak your level, then just export what you like in an environment variable, MESSAGELEVEL:

`
MESSAGELEVEL="QUIET"
export MESSAGELEVEL
deid --action get
`

And nothing would be printed!

Customize Output
If you just want to check output, it might be useful to print it to the screen. You can do this by adding the flag –print:

`
deid --action get --print
`

You will see a WHOLE bunch of output print to the screen! You could pipe this output into a file, however be careful that this will not be proper json.

`
deid --action get --print >> deid-ids.txt
cat deid-ids.txt | more
`

Put
Put works in the same way, except you would also hand it your ids (the pickle) file, in the case that you don’t call get with put (via all). In case you changed your message level to QUIET, change it back!

`
MESSAGELEVEL="DEBUG"
export MESSAGELEVEL
`

Now we give the function the pickle file from above:

`
ids=/tmp/tmp6sywao9a/deid-ids.pkl
deid --action put --ids $ids
`

and we again haven’t provided our own top folder with files, so we use the dicom cookies.

`
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
PUT identifiers from dicom-cookies
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
Loading /tmp/tmp6sywao9a/deid-ids.pkl
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
Files saved to /tmp/tmpyti6zfiw
`

Did they save?

```
ls /tmp/tmpyti6zfiw/
image1.dcm  image3.dcm  image5.dcm  image7.dcm
image2.dcm  image4.dcm  image6.dcm

```

Customizing Output Directory
You can change the output directory with the –outfolder flag:

```
ids=/tmp/tmp6sywao9a/deid-ids.pkl
out=/home/vanessa/Desktop

deid –action put –ids $ids –outfolder $out
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
PUT identifiers from dicom-cookies
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
Loading /tmp/tmp6sywao9a/deid-ids.pkl
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
7 dicom files at /home/vanessa/Desktop
```

if you try to do it again, and the files exist, it will get angry at you. I’ll change the level to ERROR so you don’t see the DEBUG statements:

`
MESSAGELEVEL="ERROR"
export MESSAGELEVEL
deid --action put --ids $ids --outfolder $out
ERROR image4.dcm already exists, overwrite set to False. Not writing.
ERROR image2.dcm already exists, overwrite set to False. Not writing.
ERROR image7.dcm already exists, overwrite set to False. Not writing.
ERROR image6.dcm already exists, overwrite set to False. Not writing.
ERROR image3.dcm already exists, overwrite set to False. Not writing.
ERROR image1.dcm already exists, overwrite set to False. Not writing.
ERROR image5.dcm already exists, overwrite set to False. Not writing.
`

This is mostly to protect you from accidentally over-writing data you didn’t know was there. If you want to overwrite, you can do that:

`
MESSAGELEVEL="DEBUG"
export MESSAGELEVEL
deid --action put --ids $ids --outfolder $out --overwrite
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
PUT identifiers from dicom-cookies
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
Loading /tmp/tmp6sywao9a/deid-ids.pkl
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
7 dicom files at /home/vanessa/Desktop
`

and no error message occurs.

Customize Deid Recipe
If you generate a configuration file (deid) that says how you want to deidentify your data, then you can give that to get. Here is a simple one, discussed in [config](config.md) and [available here](../examples/deid/deid.dicom) for our dicom cookies:

```
cat examples/deid/deid.dicom
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
REPLACE SOPInstanceUID var:source_id
```

The nice thing about using a deid is that (in the future when we don’t have only one format, dicom), you will be able to give these files to the application and not have to specify a format. You will be able to have some custom deid file in a directory of folders that will be applied to its folder and directories below it, ip to the next found file (meaning you can identify different formats of data with one call). Right now (with only one format) we don’t need that, but the software is ready for it.

`
ids=/tmp/tmp6sywao9a/deid-ids.pkl
deid="examples/deid/deid.dicom"
deid --action put --ids $ids --deid $deid
DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
PUT identifiers from dicom-cookies
DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
Loading /tmp/tmp6sywao9a/deid-ids.pkl
DEBUG Attempting ADDITION of PatientIdentityRemoved to image4.dcm.
WARNING REPLACE PatientID not done for image4.dcm
WARNING REPLACE SOPInstanceUID not done for image4.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Attempting ADDITION of PatientIdentityRemoved to image2.dcm.
WARNING REPLACE PatientID not done for image2.dcm
WARNING REPLACE SOPInstanceUID not done for image2.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Attempting ADDITION of PatientIdentityRemoved to image7.dcm.
WARNING REPLACE PatientID not done for image7.dcm
WARNING REPLACE SOPInstanceUID not done for image7.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Attempting ADDITION of PatientIdentityRemoved to image6.dcm.
WARNING REPLACE PatientID not done for image6.dcm
WARNING REPLACE SOPInstanceUID not done for image6.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Attempting ADDITION of PatientIdentityRemoved to image3.dcm.
WARNING REPLACE PatientID not done for image3.dcm
WARNING REPLACE SOPInstanceUID not done for image3.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Attempting ADDITION of PatientIdentityRemoved to image1.dcm.
WARNING REPLACE PatientID not done for image1.dcm
WARNING REPLACE SOPInstanceUID not done for image1.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Attempting ADDITION of PatientIdentityRemoved to image5.dcm.
WARNING REPLACE PatientID not done for image5.dcm
WARNING REPLACE SOPInstanceUID not done for image5.dcm
7 dicom files at /tmp/tmp5reygueo
`

And we can see the files:

```
ls /tmp/tmp5reygueo/
image1.dcm  image3.dcm  image5.dcm  image7.dcm
image2.dcm  image4.dcm  image6.dcm

```

The reason because we get a lot of warnings is because I specified to replace fields in the data with variables in the ids data structure, but I didn’t actually add them. In practice, this would mean they would be removed from the header. We would have needed to load the pickle, add the identifiers, and then give the ids datastructure to put. Let’s quickly see what that would look like (in python). First, load the identifiers we generated:

```
from deid.identifiers import (


load_identifiers,
save_identifiers




)

idspkl = “/tmp/tmp3g0x8ts2/deid-ids.pkl”
ids = load_identifiers(idspkl)

Loading /tmp/tmp3g0x8ts2/deid-ids.pkl
```

Now, we need to define an “id” and “source_id” to substitute, here is a loop to do that. At this point you would probably want to save whatever you need to your IRB approved database / protocol.

```
count=0
for entity, items in ids.items():



	for item in items:
	ids[entity][item][‘id’] = “cookiemonster”
ids[entity][item][‘source_id’] = “cookiemonster-image-%s” %(count)
count+=1








```

and let’s save over the old one, why not.

`
ids = save_identifiers(ids)
exit
`

Now let’s try again - since the fields are defined in the data, we shouldn’t see the warning messages.

```
ids=/tmp/tmp3g0x8ts2/deid-ids.pkl
deid=”examples/deid/deid.dicom”
deid –action put –ids $ids –deid $deid

DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
PUT identifiers from dicom-cookies
DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
Loading /tmp/tmp3g0x8ts2/deid-ids.pkl
DEBUG Attempting ADDITION of PatientIdentityRemoved to image4.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Attempting ADDITION of PatientIdentityRemoved to image2.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Attempting ADDITION of PatientIdentityRemoved to image7.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Attempting ADDITION of PatientIdentityRemoved to image6.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Attempting ADDITION of PatientIdentityRemoved to image3.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Attempting ADDITION of PatientIdentityRemoved to image1.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Attempting ADDITION of PatientIdentityRemoved to image5.dcm.
7 dicom files at /tmp/tmpqbols1q9
```

Looks good!

Put and Get (All)
If you just want to de-identify your data, (meaning get and put without intervention in between) you can use –action all:

`
deid --action all
No input folder specified, will use demo dicom-cookies.
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
GET and PUT identifiers from dicom-cookies
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG Found 27 defined fields for image4.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Found 27 defined fields for image2.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Found 27 defined fields for image7.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Found 27 defined fields for image6.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Found 27 defined fields for image3.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Found 27 defined fields for image1.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Found 27 defined fields for image5.dcm
Writing ids to /tmp/tmp12lwhq7x/deid-ids.pkl
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
7 dicom files at /tmp/tmp12lwhq7x
`

This will mean that the majority of things will be removed. You can still specify a deid file to have additions, or blanks, but all variables must be present in the header already (eg, the fields returned in the ids that we had tweaked above) for it to work.

Your own folder
This is what you really want to do! Specify your own input folder with –input

`
deid --action get --input deid/data/dicom-cookies
`

That’s it! If you want more robust explanation, or better control of this process, go back to the README.md and look at the later sections that talk about creating a [config deid file](config.md), using [get](get.md), [put](put.md), and notes for [developers](developer.md)

 # Configuration

A full anonymization process has three parts:

	define a set of rules for de-identification, we call this a [deid recipe](recipe.md) (optional)

	[get](get.md) current fields (if you need to use them to look up replacements, etc)

	[update](update.md) identifiers however you need for your de-identification process.

	[put](put.md) (possibly updated) identifiers back into the data, and deidentify fully.

this document will talk about the first step of this process, how you can configure rules for the software. If you are interested in the command line client for these commands (and not functions) you should see [the client](client.md).

Defaults
The application does the following, by default, taking a conservative de-identification process:

	All fields are returned to you for inspection.

	You can replace none or all of these fields with your identifiers of choice

	The data will be rewritten with your changes, and all other fields will be blanked.

	A header field will be added that says the data has been de-identified.

However, you might want to do either of the following:

	have a specific action for some set of headers, where actions include BLANK, REPLACE, JITTER, REMOVE, and KEEP

	perform some custom functions between get, update, and put.

We will show you a working example of the above as you continue this walkthrough. For now, let’s review configuration settings.

Standard De-identification
For a standard de-identification, you will likely want to extract data, replace some fields, and put back the replacements. In this case you need to make a config file called deid that should be provided with your function calls. The format of this file is discussed below, and can be used to specify preferences for different kinds of datasets (dicom or nifti) and things to identify (pixels and headers).

Rules
You can create a specification of rules, a file called deid, for the application to customize its behavior. Let’s look at an example:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
BLANK OrdValue
KEEP Modality
REPLACE id var:entity_id
JITTER StudyDate var:entity_timestamp
REMOVE ReferringPhysicianName
```

In the above example, we tell the application exactly how to deal with header fields for dicom. We do that by way of sections (the lines that begin with % like %header and actions (eg, KEEP). Each of these variables will be discussed in detail, next.

Format
The first thing that should appear in a recipe file is the FORMAT label. This is a message to the application that the following commands are intended for dicom files, and the name dicom matches exactly with the module we have provided, [dicom](../deid/dicom).

Sections
Each section corresponds to a part of the data (eg, header or pixels) and then defines actions that can be taken for it.

Actions
Although different sections can have their own actions defined, for simplicity many sections share the same set:

	ADD

	BLANK

	JITTER

	KEEP

	REMOVE

	REPLACE

And the command in the file will either have the format of <ACTION> <FIELD> <VALUE> or in the case of binary actions, just <ACTION> <VALUE>. For example, both of the following are valid:

`
#<ACTION> <FIELD> <VALUE>
ADD PatientIdentityRemoved Yes
#<ACTION> <FIELD>
KEEP PixelData
`

In the case that your need to do something like “replace FIELD with my other variable,” then you want to format the value to tell the application that it should find the field in the data structure you pass it (discussed later). That format looks like this:

`
#<ACTION> <FIELD> <VALUE>
REPLACE PatientID var:suid
`

In the above, we tell the software to replace the field PatientID with whatever value is defined under variable suid. Now let’s talk about how the actions are relevant to different sections, first the header.

Header
We know that we are dealing with functions relevant to the header of the image by way of the %header section. This section can have a series of commands called actions that tell the software how to deal with different fields. For the header section, the following actions are allowed, and each is specific to an action to be taken on a header field/value:

	ADD: Add a new field to the dataset(s). If the value is a string, it’s assumed to be the value that is desired to be added. If the value is in the form var:OrdValue then the application will expect to find the value to replace in a variable in the request called OrdValue (more on this later).

	BLANK: If you want to blank a field instead of remove it, use this option. This is the default action.

	KEEP: implies that the value should not be replaced, removed, or blanked.

	REPLACE: implies that the value should be replaced by a string, or a variable in the format var:FieldName.

	REMOVE: completely remove the field from the dataset.

For the above, given that there are conflicting commands, the more conservative is given preference. For example:

`
REMOVE > BLANK > REPLACE > JITTER/KEEP/ADD
`

For example, if I add or keep a header, but then also specify to blank or remove it, it will be blanked or removed. If I specify to blank a header and remove it, it will be removed. If I specify to replace a header and blank it, it will be blanked. Most of the time, you won’t need to specify remove, because it is the default. If we were to come up with a pretend config file to represent the default, it would look like this:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REMOVE *
KEEP PixelData
KEEP SamplesPerPixel
KEEP Columns
KEEP Rows
```

The above would remove everything except for the pixel data, and a few fields that are relevant to its dimensions. It would add a field to indicate the patient’s identity was removed.

Jitter
For jitter, you can add a hard coded number, or a variable to specify it:

`
JITTER StudyDate var:jitter
JITTER Date 31
JITTER PatientBirthDate -31
`

Field Expansion
In some cases, it might be extremely tenuous to list every field ending in the same thing, to perform the same action for. For example:

`
JITTER StudyDate var:jitter
JITTER Date var:jitter
JITTER PatientBirthDate var:jitter
`

could much better be captured as:

`
JITTER endswith:Date var:jitter
`

and this is the idea of an expander. And expander is an optional filter applied to a header field (the middle value) to select some subset of header values. Currently, we support startswith and endswith. The following examples show what fields are selected based on each filter:

```
JITTER endswith:Date var:jitter
[‘AcquisitionDate’, ‘ContentDate’, ‘InstanceCreationDate’, ‘PatientBirthDate’, ‘PerformedProcedureStepStartDate’, ‘SeriesDate’, ‘StudyDate’]

REMOVE startswith:Patient
[‘PatientAddress’, ‘PatientAge’, ‘PatientBirthDate’, ‘PatientID’, ‘PatientName’, ‘PatientPosition’, ‘PatientSex’]
```

Pixels
The %pixels section has not been implemented yet, but will allow for specification of how to de-identify pixel data.

Labels
The %labels section is a way for the user to supply custom commands to an application that aren’t relevant to the header or pixels. For example, If I wanted to carry around a version or a maintainer address, I could do that as follows:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID cookie-monster

%labels
ADD MAINTAINER vsochat@stanford.edu
ADD VERSION 1.0
```

As you can see, the labels follow the same action commands as before, in the case that the application needs them. In case you are interested in what the application sees when it reads the file above (if you are a developer) it looks like this:

```
{



	“labels”:[
	
	{
	“field”:”MAINTAINER”,
“value”:”vsochat@stanford.edu”,
“action”:”ADD”





},
{


“field”:”VERSION”,
“value”:”1.0”,
“action”:”ADD”




}





],

“format”:”dicom”,
“header”:[



	{
	“field”:”PatientIdentityRemoved”,
“value”:”Yes”,
“action”:”ADD”





},
{


“field”:”PatientID”,
“value”:”cookie-monster”,
“action”:”REPLACE”




}




]





}

And you are free to map the actions (eg, ADD, REMOVE) onto whatever functionality is relevant to your application, or just skip the action entirely and use the fields and values.

## Examples
The suggested approach that you should take, replacing the main entity data with some identifier that you’ve selected, would look something like this:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
```

If you wanted to also replace the image (SOPInstanceUID) with an identifier, that might look like this:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
REPLACE SOPInstanceUID var:source_id
```

And the expectation would be that you provide variables with keys source_id and id appended to the response from get that is handed to the put action.

## Future Additions

### Format nifti
In the future when we add support for other data types, the config might look something like this (note the added nifti section):

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
REPLACE InstanceSOPUID var:source_id

FORMAT nifti

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
REPLACE InstanceSOPUID var:source_id
```

Now that you know how configuration works, you have two options. If you care about interacting with your recipe via a client, [read about that here](recipe.md). If you want to write a text file and get going with cleaning your files, you should look at some examples for generating a basic [get](get.md), which is will get a set of fields and values from your dicom files.




            

          

      

      

    

  

    
      
          
            
  # Developers Notes

This readme is intended to explain how the functions work (on the back end) for those wishing to create a module for a new image type. The basic idea is that each folder (module, eg dicom) contains a base processing template that tells the functions to get_identifiers how to process different header values for the datatype (e.g, DICOM). This folder, and others like it, should contain should contain the following files:



	config.json this is the default specification for how a dicom header is parsed, which primarily means additions, and a set of custom actions.


	__init__.py: has the purpose of exposing module functions to the higher up folder for import. For example, the function get_identifiers in [header.py](header.py) is programatically accessible via from deid.dicom import get_identifiers thanks to this file. If you create a new module with the equivalent functions, you should be fine to just copy this file, or import the functions directly from tasks.py in the module folder.


	header.py: should contain functions for get_identifiers, which should return a dictionary with top level indexes by entity, and the value of each entity another dictionary indexed by the item ids. This data structure, if provided by the client, must be understood by the function remove_identifiers.







Note that, since we are working in Python, we will be using dicom headers that are mapped from the standard to pydicom, the entire mapping which is provided [here](https://github.com/pydicom/pydicom/blob/master/pydicom/_dicom_dict.py), and programatically accessible via:

```
from pydicom._dicom_dict import DicomDictionary

field_names = []

	for key,entry in DicomDictionary.items():
	
	if entry[3] != “Retired”:
	field_names.append(entry[4])


```

Since there are so many, we enforce (at least for dicom) the most conservative approach of removing header fields that the client has not asked anything special to be done for. Let’s now talk about the [config.json](config.json).

## Config.json
The base of the json has two classes, and they correspond with the actions of get and put, where a “get” is broadly the step of getting identifiers from the data, and the “put” is putting things back (and realistically, removing a lot). Here they are, completely empty:

```
{

“get”: {},
“put”: {}

}

The entire data structure isn’t very large, and can be shown to you:

```
{


“get”: {


“skip”: [“PixelData”],
“ids”:{


“entity”:”PatientID”,
“item”:”SOPInstanceUID”




}




},

“put”:{



“actions”:[


{“action”:”ADD”,”field”:”PatientIdentityRemoved”,”value”: “Yes”},







]




}






}

Note that we don’t need to specify the datatypes like “PixelData” or “Columns”, or other fields related to the data. These fields are by default kept, as they are specific to the pixel data. For details see [this issue](https://github.com/pydicom/pydicom/issues/372).

### Get
If you read the details about get (usage for the client) see [get](get.md), you probably see some commonality. We have identified default fields in the header for entity and item under [‘get’][‘ids’] (both which can be altered by the user via a function call) and then we skip over PixelData, because we don’t want to return that for inspection, or have it in the list to include. If there are others you don’t want returned, then add them to the skip list. Have caution that the user won’t see the field returned, and likely won’t ask for any action to be taken, meaning it will by default be blanked.

### Put
Put is primarily concerned with actions, which as they are for the user, can be ADD, KEEP, REMOVE, or BLANK. For the default, we keep the useful pixel data, and specify that we have removed the patient identity.




            

          

      

      

    

  

    
      
          
            
  # Get Identifiers (GET)

A get request using the deid module will return the headers found in a particular dataset. Let’s walk through these steps. As we did in the [loading](loading.md), the first step was to load a dicom dataset:

```
from deid.data import get_dataset
from deid.dicom import get_files

base = get_dataset(“dicom-cookies”)
dicom_files = list(get_files(base))
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
```

We now have our small dataset that we want to de-identify! The first step is to get the identifiers. By default, we will return all of them. That call will look like this:

`
from deid.dicom import get_identifiers
ids = get_identifiers(dicom_files)
`

By default, any Sequences (lists of items) within the files are expanded and provided. This means that a Sequence with header value AdditionalData and item Modality will be returned as AdditionalData_Modality. If you want to disable this and not return expanded sequences:

```
ids = get_identifiers(dicom_files=dicom_files,

expand_sequences=False)


```

We will see debug output for each, indicating that we found a particular number of fields:

`
$ ids=get_identifiers(dicom_files)
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG Found 27 defined fields for image4.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Found 27 defined fields for image2.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Found 27 defined fields for image7.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Found 27 defined fields for image6.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Found 27 defined fields for image3.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Found 27 defined fields for image1.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Found 27 defined fields for image5.dcm
`

Since a data structure is returned indexed by an entity id and then item (eg, patient –> image). under the hood this means that we use fields from the header to use as the index for entity id and item id. Id you don’t change the defaults, the entity_id is PatientID and item id is SOPInstanceUID. To change this, just specify in the function:

```


	ids = get_identifiers(dicom_files,
	entity_id=”PatientFullName”,
item_id=”InstanceUID”)


```

## Organization
Let’s take a closer look at how this is organized. If you notice, the above seems to be able to identify entity and items. This is because in the default, the configuration has set an entity id to be the PatientID and the item the SOPInstanceUID. This is how it is organized in the returned result - the entity is the first lookup key:

```
We found one entity
len(ids)
1

The entity id is cookie-47
ids.keys()
dict_keys([‘cookie-47’])
```

and then below that, the data is indexed by the item id:

```
list(ids[‘cookie-47’].keys())
[‘1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947’,

‘1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989’,
‘1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351’,
‘1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131’,
‘1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268’,
‘1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276’,
‘1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866’]


```
note that I only made it a list for prettier printing.

### Why this organization?
We have this organization because by default, the software doesn’t know what headers it will find in the dicom files, and it also doesn’t know the number of (possibly) different entities (eg, a patient) or images (eg, an instance) it will find. For this reason, by default, for dicom we have specified that the entity id is the PatientID and the itemID is the SOPInstanceUID.

### Header Fields
Then if we look at the data under a particular item id, we see the dicom fields (and corresponding values) found in the data.

```
ids[‘cookie-47’][‘1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947’]
{‘BitsAllocated’: 8,

‘BitsStored’: 8,
‘Columns’: 2048,
‘ConversionType’: ‘WSD’,
‘HighBit’: 7,
‘ImageComments’: ‘This is a cookie tumor dataset for testing dicom tools.’,
‘InstitutionName’: ‘STANFORD’,
‘LossyImageCompression’: ‘01’,
‘LossyImageCompressionMethod’: ‘ISO_10918_1’,
‘NameOfPhysiciansReadingStudy’: ‘Dr. damp lake’,
‘OperatorsName’: ‘nameless voice’,
‘PatientID’: ‘cookie-47’,
‘PatientName’: ‘still salad’,
‘PatientSex’: ‘F’,
‘PhotometricInterpretation’: ‘YBR_FULL_422’,
‘PixelRepresentation’: 0,
‘PlanarConfiguration’: 0,
‘ReferringPhysicianName’: ‘Dr. bold moon’,
‘Rows’: 1536,
‘SOPClassUID’: ‘1.2.840.10008.5.1.4.1.1.7’,
‘SOPInstanceUID’: ‘1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947’,
‘SamplesPerPixel’: 3,
‘SeriesInstanceUID’: ‘1.2.276.0.7230010.3.1.3.8323329.5360.1495927170.640945’,
‘SpecificCharacterSet’: ‘ISO_IR 100’,
‘StudyDate’: ‘20131210’,
‘StudyInstanceUID’: ‘1.2.276.0.7230010.3.1.2.8323329.5360.1495927170.640946’,
‘StudyTime’: ‘191930’}


```

## Save what you need
Pretty neat! At this point, you have a few options:

### Recipe Interaction
If you want to do more than load in a basic recipe file (e.g., add new actions, use only a subset of groups, or any customization) then you should read about how to [work with recipes](recipes.md).

### Clean Pixels
It’s likely that the pixels in the images have burned in annotations, and we can use the header data to flag these images. Thus, before you replace identifiers, you probably want to do this. We have a DicomCleaner class that can flag images for PHI based on matching some header filter criteria, and you can [read about that here](pixels.md).

### Update Identifiers
Once you are finished with any customization of the recipe, updating identifiers, and/or potentially flagging and quarantining images that have PHI, you should be ready to [update your images](update.md) with new fields based on the deid recipe.



            

          

      

      

    

  

    
      
          
            
  # Getting Started

## Application Flow
The general flow of the main function to anonymize is the following:



	Check each image against a set of filters, with decreasing levels of specificity. An image is attributed to the filter group with the highest level of specificity, which is most specific to it. For example, an image that would be flagged with a general Blacklist criteria that is first flagged with Greylist (meaning we know how to clean it) is belongs to Greylist. We check more specific first to be computationally more efficient, because we can stop checking the image when we hit the first criteria flag.


	Proceed to process each group separately







### Groups
While you are free to define your own groups and criteria, we provide a [default deid](../deid/data/deid.dicom) that has the following levels defined within:



	Greylist is typically checked first, and an image being flagged for this groups means that contains PHI in a reliable, known configuration. The greylist checks are based on image headers like modality, and manufacturer that we are positive about the locations of pixels that need to be scrubbed. If an image is greylisted, we can confidently clean it, and continue processing. This strategy is similar to the MIRC-CTP protocol.


	Whitelist: images also must pass through sets of criteria that serve as flags that the image is reliable to not contain any PHI.  These images can be passed without intervention (Note from Vanessa, I don’t see many circumstances for which this might apply).


	Blacklist images that are not Greylisted or Blacklisted are largely unknowns. They may contain PHI in an unstructured fashion, and we need to be conservative and precaucious. Blacklist images may be passed through a more sophisticated filter (such as a character recognition algorithm), deleted, or passed through and possibly marked (in the DICOM header or on the image) to note the images are blacklisted (with the requesting researcher defining the best method).







### Filters
Filters are included with the deid.dicom specification, provided by default with the application, and also customizable by you. The start of a filter might look like this:

```
FORMAT dicom

%filter graylist

	LABEL CT Dose Series
	contains Modality CT
+ contains Manufacturer GE
+ contains CodeMeaning IEC Body Dosimetry Phantom
coordinates 0,0,512,200

	LABEL Dose Report
	contains Modality CT
+ contains Manufacturer GE
+ contains SeriesDescription Dose Report
coordinates 0,0,512,110

%filter blacklist

LABEL Burned In Annotation
contains ImageType SAVE
contains SeriesDescription SAVE
contains BurnedInAnnotation YES
empty ImageType
empty DateOfSecondaryCapture
empty SecondaryCaptureDeviceManufacturer
empty SecondaryCaptureDeviceManufacturerModelName
empty SecondaryCaptureDeviceSoftwareVersions
```

Each section is indicated by %filter, and within sections, a set of criteria are defined under a LABEL.  The formatting of this is inspired by both [CTP](http://mircwiki.rsna.org/index.php?title=The_CTP_DICOM_Filter) and [Singularity](http://singularity.lbl.gov/bootstrap-image#post), which is based on RPM.

##### How are images filtered?
You can imagine an image starting at the top of the file, and moving down line by line. If at any point it doesn’t pass criteria, it is flagged and placed with the group, and no further checking is done.  For this purpose, the sections are ordered by their specificity and preference. This means that, for the above, by placing blacklist after graylist we are saying that an image that could be flagged to be both in the blacklist and graylist will hit the graylist first. This is logical because the graylist corresponds to a specific set of image header criteria for which we know how to clean. We only resort to general blacklist criteria if we make it far enough and haven’t been convinced that there isn’t PHI.

##### How do I read a criteria?
Each filter section criteria starts with LABEL. this is an identifier to report to the user given that the flag goes off. Each criteria then has the following format:

`
<criteria> <field> <value>
`
where “value” is optional, depending on the filter. For example:

`
LABEL Burned In Annotation
contains ImageType SAVE
`

Reads “flag the image with a Burned In Annotation, which belongs to the blacklist filter, if the ImageType fields contains SAVE.” If you want to do an “and” statement across two fields, just use +:

```
contains ImageType SAVE

	contains Manufacturer GE


```

>> “flag the image if the ImageType contains SAVE AND Manufacturer contains GE. To do an “or”

```
contains ImageType SAVE

|| contains Manufacturer GE


```

>> “flag the image if the ImageType contains SAVE OR Manufacturer contains GE.

And you can have multiple criteria for one LABEL

`
contains SeriesDescription SAVE
+ contains BurnedInAnnotation YES
empty ImageType
|| empty DateOfSecondaryCapture
`



	First check: “flag the image if SeriesDescription contains SAVE AND BurnedInAnnotation has YES”


	Second check: “flag the image if ImageType is empty or DateOfSecondaryCapture is empty.”







And to make it even simpler, if you want to check one field for a value a OR b, you can use regular expressions. The following checks ImageType for “CT” OR “MRI”

`
equals ImageType CT|MRI
`

which is equivalent to:

`
equals ImageTyoe CT
|| equals ImageType MRI
`

What if you want to evaluate an inner statement? Eg: “flag the image if Criteria 1 and (Criteria 2 OR Criteria 3)? The inner parentheses would need to be evaluated first. You would represent the content of the inner parentheses (Criteria 1 or Criteria 2) on the same line:

```
LABEL Ct Dose Series

contains Criteria1
+ contains Criteria2 Value2 || contains Criteria3 Value3
coordinates 0,0,512,200


```

##### What are the criteria options?
For all of the below, case does not matter. All fields are changed to lowercase before comparison, and stripped of leading and trailing white spaces.



	contains is using a regular expression search, meaning that the word can appear anywhere in the field (eg, a contains “save” would flag a value of “saved”.


	equals means you want to match an expression exactly. equals with “save” would not flag a value of “saved”.


	empty means that the header is present in the data, but it’s an empty string (eg, “”).


	missing means that the header is not present in the data.


	notEquals is the inverse of equals


	notContains is the inverse of contains







##### How do I customize the process?
There are several things you can customize!


	You first don’t have to use the application default files. You can make a copy, customize to your liking, and provide the path to the file as an argument. If you have criteria to contribute, we encourage you to do so.


	The name of the filter itself doesn’t matter, you are free to use different terms than whitelist, blacklist, etc.




## An example

### Deid Executable
The deid executable is installed automatically with the module. Just running deid we see:

```
usage: deid [-h] [–version] [–quiet] [–debug] [–outfolder OUTFOLDER]

[–format {dicom}] [–overwrite] [–deid DEID]
{inspect,identifiers} …

Deid (de-identification, anonymization) command line tool.

	optional arguments:
	
	-h, --help

	show this help message and exit

	--version, -v

	show deid software version

	--quiet, -q

	Quiet the verbose output

	--debug

	use verbose logging to debug.

	--outfolder OUTFOLDER, -o OUTFOLDER

	full path to save output, will use temporary folder if
not specified

	–format {dicom}, -f {dicom}
	format of images, default is dicom

	--overwrite

	overwrite pre-existing files in output directory, if
they exist.

	actions:
	actions for deid to perform

	{inspect,identifiers}
	
action for deid to perform

inspect various checks for PHI and quality
identifiers extract and replace identifiers from headers


```

What we want to do is inspect:

```
usage: deid inspect [-h] [–deid DEID] [–save] folder [folder …]

	positional arguments:
	
	folder input folder or single image. If not provided, test data will
	be used.

	optional arguments:
	
	-h, --help

	show this help message and exit

	--deid DEID

	deid file with preferences, if not specified, default used.

	--save, -s

	save result to output tab separated file.


```

Let’s run the command with test data (dicom cookies) and specify the deid in our examples folder:

```
deid inspect –deid examples/deid deid/data/dicom-cookies

Found 7 valid dicom files
FLAGGED image6.dcm in section dangerouscookie
LABEL: LABEL Criteria for Dangerous Cookie
CRITERIA: PatientSex contains M and OperatorsName notequals bold bread
FLAGGED image5.dcm in section dangerouscookie
LABEL: LABEL Criteria for Dangerous Cookie
CRITERIA: PatientSex contains M and OperatorsName notequals bold bread

SUMMARY ================================

CLEAN 5 files
FLAGGED dangerouscookie 2 files
```
You will see an output, and then a summary of file lists for each of clean and flagged.

If you want to run the above and save the result to file:

```
deid inspect –deid examples/deid deid/data/dicom-cookies –save
…
SUMMARY ================================

CLEAN 5 files
FLAGGED dangerouscookie 2 files
Result written to pixel-flag-results-dicom-cookies-17-09-02.tsv
```

and the file looks like this - images with OperatorsName notequals “bold bread” and PatientSex “M” are flagged:

`
dicom_file      pixels_flagged  flag_list       reason
deid/data/dicom-cookies/image4.dcm,CLEAN
deid/data/dicom-cookies/image2.dcm,CLEAN
deid/data/dicom-cookies/image7.dcm,CLEAN
deid/data/dicom-cookies/image3.dcm,CLEAN
deid/data/dicom-cookies/image1.dcm,CLEAN
deid/data/dicom-cookies/image1.dcm,FLAGGED      dangerouscookie  PatientSex contains M and OperatorsName notequals bold bread
deid/data/dicom-cookies/image1.dcm,FLAGGED      dangerouscookie  PatientSex contains M and OperatorsName notequals bold bread
`

### Within Python
First, let’s load the example “dicom cookies” dataset. We will first run this example within python, and then using a command line client (not written yet).

```
from deid.data import get_dataset
from deid.dicom import get_files

dicom_files = list(get_files(get_dataset(‘dicom-cookies’)))
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files

	[‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image4.dcm’,
	‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image2.dcm’,
‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image7.dcm’,
‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image6.dcm’,
‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image3.dcm’,
‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image1.dcm’,
‘/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image5.dcm’]


```

Next, let’s use the example deid specification file that is relevant to this dataset. We read it in like this:

```
from deid.config import load_deid

From the base of the deid repo
deid = load_deid(‘examples/deid’)
DEBUG FORMAT set to dicom
DEBUG Adding section filter dangerouscookie
DEBUG Adding section header
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
```

and the file we are reading looks like this. It’s very intuitive, we have groups of filters (more specific at the top and moving down to more general) and each is named (“dangerouscookie” and “bigimage”). Within each filter we have one criteria group, with a “+” indicating and. We could have more groups under each, but happen to not for this example.

```
FORMAT dicom

%filter dangerouscookie

LABEL Criteria for Dangerous Cookie
contains PatientSex M

	notequals OperatorsName bold bread

coordinates 0,0,512,110

%filter bigimage

LABEL Image Size Good for Machine Learning
equals Rows 2048

	equals Columns 1536

coordinates 0,0,512,200

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
REPLACE SOPInstanceUID var:source_id
```

We won’t be using the header section for this example, but for your FYI, this is the recipe for how we would want to replace information in the header, if we were cleaning the headers. Right now we are just filtering images to flag those that might have PHI. Let’s very strictly walk through the logic that will be taken above:



	If the header contains field PatientSex “M” (Male), and OperatorsName is not “bold bread,” we flag. Otherwise, keep going.


	If the header has field Rows 2048 and Columns 1536 we flag.







The flag that is done first (more specific) is the final decision. This means that you should have your known coordinates of PHI (eg, specific modality, manufacturer, etc) first, and followed by more general estimates of PHI. Likely a later group will create flags for more manual inspection.

Now let’s run the filter! First just within python:

`
from deid.dicom import has_burned_pixels
groups = has_burned_pixels(dicom_files=dicom_files, deid='examples/deid')
`

We immediately see that two are flagged:

`
FLAGGED image6.dcm in section dangerouscookie
LABEL: LABEL Criteria for Dangerous Cookie
CRITERIA:  PatientSex contains M and OperatorsName notequals bold bread
FLAGGED image5.dcm in section dangerouscookie
LABEL: LABEL Criteria for Dangerous Cookie
CRITERIA:  PatientSex contains M and OperatorsName notequals bold bread
`

Is this accurate?

```
for dicom_file in dicom_files:

dicom = read_file(dicom_file)
print(“%s:%s - %s” %(os.path.basename(dicom_file),

dicom.OperatorsName,
dicom.PatientSex))

image4.dcm:bold bread - M
image2.dcm:lingering hill - F
image7.dcm:sweet brook - F
image6.dcm:green paper - M <— FLAGGED
image3.dcm:nameless voice - F
image1.dcm:fragrant pond - F
image5.dcm:curly darkness - M <— FLAGGED
```

Seems to be! The data structure returned gives us programmatic access to the groups, including list of clean (top), list of flagged and flag list name (flagged) and given flagged, a lookup dictionary with reasons:

```
{

	“clean”:[
	“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image4.dcm”,
“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image2.dcm”,
“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image7.dcm”,
“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image3.dcm”,
“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image1.dcm”

],
“flagged”:{

	“dangerouscookie”:[
	“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image6.dcm”,
“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image5.dcm”

]

},
“reason”:{

“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image5.dcm”:” PatientSex contains M and OperatorsName notequals bold bread”,
“/home/vanessa/Documents/Dropbox/Code/dicom/deid/deid/data/dicom-cookies/image6.dcm”:” PatientSex contains M and OperatorsName notequals bold bread”

}

}

 # Ideas

These are general ideas/thinking for future development, mostly notes not implemented / planned in any way.

We might want to be able to specify multiple sections in one file, for more complex tasks like converting from dicom to nifti, and then scrubbing the nifti data:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes

%function

RUN dicom2nifti

FORMAT nifti

%pixels

RUN pydeface
```

In the above example, the user will start with a set of dicom files, and do manipulation of the header. When the dicom data is deidentified, it will be converted from dicom to nifti with some function (from dicom import dicom2nifti) and then the nifti data will be defaced. If the user needs variable replacement of header values, this is where the pipeline might hit a snag, because it has to stop to let the user manipulate the data. It might make sense to not support this for now, or encourage doing one (then) the other. It is generally recommended to deal with most header information before conversion to nifti, as nifti scrapes away most of these header fields. This part has not yet been implemented, and is subject to change.

 # Loading Data

File Organization

While they are different file organizations for dicom, we are going to take a simple approach of assuming some top level directory with some number of files within (yes, including subdirectories). For example, if you retrieved your data using a tool like [dcmqr](https://dcm4che.atlassian.net/wiki/display/d2/dcmqr) with a C-MOVE, then you might have a flat directory structure. Sometimes the files won’t have an extension (for example, being named by a SOPInstanceUID, but sometimes they will:

`
tree deid/data/dicom-cookies/
deid/data/dicom-cookies/
├── image1.dcm
├── image2.dcm
├── image3.dcm
├── image4.dcm
├── image5.dcm
├── image6.dcm
└── image7.dcm
`

It doesn’t actually matter so much how your data is structured, you can use any method that you like to. You could technically just use os.listdir or glob:

```
from glob import glob
import os

base = “deid/data/dicom-cookies”

dicom_files = glob(“%s/*” %base)
[‘deid/data/cookie-series/image4.dcm’,


‘deid/data/cookie-series/image2.dcm’,
‘deid/data/cookie-series/image7.dcm’,
‘deid/data/cookie-series/image6.dcm’,
‘deid/data/cookie-series/image3.dcm’,
‘deid/data/cookie-series/image1.dcm’,
‘deid/data/cookie-series/image5.dcm’]




os.listdir(base)
[‘image4.dcm’,


‘image2.dcm’,
‘image7.dcm’,
‘image6.dcm’,
‘image3.dcm’,
‘image1.dcm’,
‘image5.dcm’]




```

Notice anything that might trigger a bug with the above? You probably should ask for an absolute path.

```
# For glob
dicom_files = glob(“%s/*” %base)
dicom_files = [os.path.abspath(x) for x in dicom_files]

# For os module
dicom_files = []
for root, folders, files in os.walk(base):



	for file in files:
	fullpath = os.path.abspath(os.path.join(root,file))
dicom_files.append(fullpath)








```

We provide a more robust function, because it’s usually the case that you want to match a pattern of file, have subfolders, or want a validation done to be sure that each file is dicom.

Find Datasets
The function that we have provided will find all datasets matching some pattern (or all files recursively in a folder). You simply need to provide a list of top folders, a list of files and folders, or just files to start. For the purposes of this walkthrough, we will load data folders that are provided with the application.

```
from deid.data import get_dataset

base = get_dataset(“dicom-cookies”)
base
‘/home/vanessa/anaconda3/lib/python3.5/site-packages/som-0.1.1-py3.5.egg/som/data/dicom-cookies’
```

In the above, all we’ve done it retrieved the full path for a folder of dicom files. Let’s try to read in the data:

```
from deid.dicom import get_files

dicom_files = list(get_files(base))
DEBUG Found 7 contender files in dicom-cookies
DEBUG Checking 7 dicom files for validation.
Found 7 valid dicom files
```

We can also specify to not do the check, if we are absolutely sure. For larger datasets this might speed up processing a little bit.

`
dicom_files = list(get_files(base,check=False))
DEBUG Found 7 contender files in dicom-cookies
`

We can also give it a particular pattern to match. Since these files all end with .dcm, that’s not so useful. Let’s give a pattern to just match image1.dcm:

`
dicom_files = list(get_files(base,pattern="image1*"))
DEBUG Found 1 contender files in dicom-cookies
DEBUG Checking 1 dicom files for validation.
Found 1 valid dicom files
`

At this point, you should have a list of dicom files. You might now want to [configure](config.md) your deidentifation.

 # Cleaning Pixels

At this point, you’ve possibly obtained identifiers via a [get](get.md) action, and you want to figure out which of your images have pixels burned into the data. If you don’t want the detalis, jump into our [example script](https://github.com/pydicom/deid/blob/master/examples/dicom/pixels/run-cleaner-client.py). Here we will walk through how this cleaner was derived, and how it works.

Inspiration from CTP
Flagging images with potentially having burned in PHI is based on a well established rule-based approach. We know a concrete list of header fields and known locations with PHI associated with fields in the header, and we can check these fields in any files and then perform cleaning if there is a match. This approach is based on the MIRCTP functions to [filter DICOM](http://mircwiki.rsna.org/index.php?title=The_CTP_DICOM_Filter) and then [Anonymize](http://mircwiki.rsna.org/index.php?title=The_CTP_DICOM_Pixel_Anonymizer). The [DicomPixelAnonymizer.script](https://github.com/johnperry/CTP/blob/master/source/files/scripts/DicomPixelAnonymizer.script) is a rule based list of known machine and modality types, and specific locations in the pixels where annotations are commonly found. The [BurnedInPixels.script](https://github.com/johnperry/CTP/blob/master/source/files/scripts/BurnedInPixelsFilter.script) is a set of filters that, given that an image passes through them, it continues processing. If it fails, then we flag it. If we look at the script above, we see the following:


	```
	# We continue processing given that:
# ![0008,0008].contains(“SAVE”) *   ImageType doesn’t contain save AND
# [0018,1012].equals(“”) *          DateofSecondaryCapture flat not present AND
# ![0008,103e].contains(“SAVE”) *   SeriesDescription does not contain save AND
# [0018,1016].equals(“”) *          SecondaryDeviceCaptureManufacturer flag not present AND
# [0018,1018].equals(“”) *          SecondaryDeviceCaptureManufacturerModelName flag not present AND
# [0018,1019].equals(“”) *          SecondaryDeviceCaptureDeviceSoftwareVersion flag not present AND
# ![0028,0301].contains(“YES”)      BurnedInAnnotation is not YES





```

and I’ve provided a “human friendly” translation of the rules. The ! operator indicates a not, and the * indicates and. You can imagine an image passing through those tests, and if it makes it all the way through, it’s considered ok. If any of the tests fail, then it gets flagged for PHI (Burned Annotations) and is quarantined. Thus, we can read through the dicom fields and summarize the above as:

	We continue processing given that:
	
	Image was not saved with some secondary software or device

	Image is not flagged to have burned pixels

If we look at the [DicomPixelAnonymizer.script](https://github.com/johnperry/CTP/blob/master/source/files/scripts/DicomPixelAnonymizer.script), it also contains criteria (and additionally, locations) for pixel areas that are known/likely to have annotations. The general format looks like this:

`
{ signature }
(region) (region) ... (region)
`
and the signature looks similar to an expression used in the BurnedInPixels.script, but the difference is that groups of logic are then paired with one or more regions:

```
{ Modality.equals(“CT”)



	
	Manufacturer.containsIgnoreCase(“manufacturer1”)
	
	ManufacturerModelName.containsIgnoreCase(“modelA”) }















(0,0,100,20) (480,200,32,250)
```

The expression above would say:

	The pixels with bounding boxes (0,0,100,20) and (480,200,32,250) should be removed if:
	
	the modality is CT AND

	the Manufacterer contains text “manufacturer1” (and ignore the case) AND

	the Manufacturer model name text contains “modelA” (and ignore the case)

I’m not entirely sure why these two are separate (as both seem to indicate a flag for an image having PHI) but likely it’s because the first group (BurnedInPixels.script) indicates header fields that are likely to indicate annotation, but don’t carry any obvious mapping to a location. We can think of both as a set of filters, some with a clear location, and others not. TLDR: the second file (DicomPixelAnonymizer.script) has both header fields and locations.

Deid Implementation
We have a [set of pixel functions](../deid/dicom/pixels) that mirror the functionality of MIRCTP, and we take a similar approach of deriving the rules for this process from a [deid recipe](recipe.md). Our implementeation of a [DicomCleaner](https://github.com/pydicom/deid/blob/master/deid/dicom/pixels/clean.py#L35) generally works as follows:

	The user initializes a [Recipe](recipe.md) to configure detecting images with PHI (and possibly cleaning). The recipe has two parts - a set of filters to run over the headers to estimate if an image has burned in pixels (a section that starts with %filter), and a list of header cleaning rules (%header).

	The recipe is used to categorize the images into groups based on the defined lists, or to clean the data.

	The user selects some subset of images to continue forward with replacement of identifiers.

To jump right in to using the Dicom Cleaner, see our [example script](https://github.com/pydicom/deid/blob/master/examples/dicom/pixels/run-cleaner-client.py). We will walk through the basics here.

We start by importing the class

`
from deid.dicom import DicomCleaner, get_files
from deid.data import get_dataset
`

and grabbing a dicom file to work with

`
dataset = get_dataset('dicom-cookies')
dicom_file = list(get_files(dataset))[0]
`

Client

We need to instantiate a client once, and can use this client to clean one or more files.
Note that there are various options for setting default output folders. if you don’t set
an output folder, a temporary directory is created and used.

`
client = DicomCleaner()
client = DicomCleaner(output_folder='/home/vanessa/Desktop')
`

The basic steps we will take are the following:

	client.detect(dicom_file): detect if the image potentially has burned in pixels

	client.clean(): clean the areas by writing black pixels, given that coordinates are provided in the recipe.

	client.save_<format>: save the images to a new dicom or png

Detect

Detect means using the deid recipe to parse headers. You must run detect before you try to clean. If you don’t:

`
client.clean()
WARNING Use <deid.dicom.pixels.clean.DicomCleaner object at 0x7fafb70b9cf8>.detect() to find coordinates first.
`

Once you’ve run detect, you will get a result that includes any flags triggered:

```
client.detect(dicom_file)

{‘flagged’: True,
‘results’: [{‘coordinates’: [],


‘group’: ‘blacklist’,
‘reason’: ‘ ImageType missing  or ImageType empty ‘}]}




```

Clean and Save
After detection, the flags that were triggered are saved with the client, until you override with another file.
You can now run clean, and save the images to a format that you like. Remember that even with flags, if there are no coordinates associated with the flag, no changes are done to the image.

`
client.clean()
client.save_png()
client.save_dicom()
`

 # Put Identifiers Back
At this point, we want to perform a put action, which is generally associated with the replace_identifiers function. As a reminder, we are working with a data structure returned from get_identifiers in [header.py](../deid/dicom/header.py) in the dicom module, and it is indexed first by entity id (PatientID) and then item ID (SOPInstanceUID). A single entry looks like this:

```
ids[‘cookie-47’][‘1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947’]
{‘BitsAllocated’: 8,


‘BitsStored’: 8,
‘Columns’: 2048,
‘ConversionType’: ‘WSD’,
‘HighBit’: 7,
‘ImageComments’: ‘This is a cookie tumor dataset for testing dicom tools.’,
‘InstitutionName’: ‘STANFORD’,
‘LossyImageCompression’: ‘01’,
‘LossyImageCompressionMethod’: ‘ISO_10918_1’,
‘NameOfPhysiciansReadingStudy’: ‘Dr. damp lake’,
‘OperatorsName’: ‘nameless voice’,
‘PatientID’: ‘cookie-47’,
‘PatientName’: ‘still salad’,
‘PatientSex’: ‘F’,
‘PhotometricInterpretation’: ‘YBR_FULL_422’,
‘PixelRepresentation’: 0,
‘PlanarConfiguration’: 0,
‘ReferringPhysicianName’: ‘Dr. bold moon’,
‘Rows’: 1536,
‘SOPClassUID’: ‘1.2.840.10008.5.1.4.1.1.7’,
‘SOPInstanceUID’: ‘1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947’,
‘SamplesPerPixel’: 3,
‘SeriesInstanceUID’: ‘1.2.276.0.7230010.3.1.3.8323329.5360.1495927170.640945’,
‘SpecificCharacterSet’: ‘ISO_IR 100’,
‘StudyDate’: ‘20131210’,
‘StudyInstanceUID’: ‘1.2.276.0.7230010.3.1.2.8323329.5360.1495927170.640946’,
‘StudyTime’: ‘191930’}




```

At this point, let’s walk through a few basic use cases. We again first need to load our dicom files:

`
from deid.dicom import get_files
from deid.data import get_dataset
base = get_dataset('dicom-cookies')
dicom_files = list(get_files(base))
`

Default: Remove Everything
In this first use case, we extracted identifiers to save to our database, and we want to remove everything in the data. To do this, we can use the dicom module defaults, and we don’t need to give the function anything. Our call would look like this:

```
from deid.dicom import replace_identifiers

cleaned_files = replace_identifiers(dicom_files=dicom_files)

DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
```

You will notice that by default, the files are written to a temporary directory:

```
cleaned_files
[‘/tmp/tmphvj05c6y/image4.dcm’,


‘/tmp/tmphvj05c6y/image2.dcm’,
‘/tmp/tmphvj05c6y/image7.dcm’,
‘/tmp/tmphvj05c6y/image6.dcm’,
‘/tmp/tmphvj05c6y/image3.dcm’,
‘/tmp/tmphvj05c6y/image1.dcm’,
‘/tmp/tmphvj05c6y/image5.dcm’]




```

You can choose to use a custom output folder:

```
cleaned_files = replace_identifiers(dicom_files=dicom_files,


output_folder=’/home/vanessa/Desktop’)




…
cleaned_files
[‘/home/vanessa/Desktop/image4.dcm’,


‘/home/vanessa/Desktop/image2.dcm’,
‘/home/vanessa/Desktop/image7.dcm’,
‘/home/vanessa/Desktop/image6.dcm’,
‘/home/vanessa/Desktop/image3.dcm’,
‘/home/vanessa/Desktop/image1.dcm’,
‘/home/vanessa/Desktop/image5.dcm’]




```

One setting that is important is overwrite, which is by default set to False. For example, let’s say we decided to run the above again, using the same output directory of desktop (where the files already exist!)

`
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
ERROR image4.dcm already exists, overwrite set to False. Not writing.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
ERROR image2.dcm already exists, overwrite set to False. Not writing.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
ERROR image7.dcm already exists, overwrite set to False. Not writing.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
ERROR image6.dcm already exists, overwrite set to False. Not writing.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
ERROR image3.dcm already exists, overwrite set to False. Not writing.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
ERROR image1.dcm already exists, overwrite set to False. Not writing.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
ERROR image5.dcm already exists, overwrite set to False. Not writing.
`

The function gets angry at us, and returns the list of files that are already there. If you really want to force an overwrite, then you need to do this:

```
cleaned_files = replace_identifiers(dicom_files=dicom_files,


output_folder=’/home/vanessa/Desktop’,
overwrite=True)




DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
```

wherever you dump your new dicoms, it’s up to you to decide how to then move and store them, and (likely) deal with the original data with identifiers.

Private Tags
An important note is that by default, this function will also remove private tags (remove_private=True). If you need private tags to determine if there is burned pixel data, you would want to set this to False, perform pixel identification, and then remove the private tags yourself:

```
# Clean the files, but set remove_private to False
cleaned_files = replace_identifiers(dicom_files=dicom_files,


remove_private=False)




DEBUG Default action is BLANK
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
WARNING Private tags were not removed!
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
WARNING Private tags were not removed!
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
WARNING Private tags were not removed!
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
WARNING Private tags were not removed!
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
WARNING Private tags were not removed!
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
WARNING Private tags were not removed!
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
WARNING Private tags were not removed!
```

Notice how the warning appeared, because we didn’t remove private tags? Next you would want to do your pixel cleaning, likely using those private tags that are still in the data. Then you would go back and remove them.

```
from deid.dicom import remove_private_identifiers

really_cleaned = remove_private_identifiers(dicom_files=cleaned_files)
DEBUG Removed private identifiers for /tmp/tmp2kayz83n/image4.dcm
DEBUG Removed private identifiers for /tmp/tmp5iadxfb9/image2.dcm
DEBUG Removed private identifiers for /tmp/tmpk0yii_ya/image7.dcm
DEBUG Removed private identifiers for /tmp/tmpnxqirboq/image6.dcm
DEBUG Removed private identifiers for /tmp/tmpp9_tj7zq/image3.dcm
DEBUG Removed private identifiers for /tmp/tmpo_kwxmlj/image1.dcm
DEBUG Removed private identifiers for /tmp/tmpf6whw73y/image5.dcm

```

You could also do pixel scraping first, and then call the function (per default) to remove private. These are the first calls that we did, not specifying the variable remove_private, and by default it was True.

Getting Private Tags
If you are working within python and want to get private tags for inspection, you can do that too! Let’s first load some default data:

`
from deid.dicom import get_files
from deid.data import get_dataset
base = get_dataset('dicom-cookies')
dicom_files = list(get_files(base))
`

and now the functions we can use. We will look at one dicom_file

```
from deid.dicom.tags import has_private, get_private

from pydicom import read_file
dicom = read_file(dicom_files[0])
```

Does it have private tags?

`
has_private(dicom)
Found 0 private tags
False
`

Nope! This is a dicom cookie, after all. If we wanted to get the list of tags, we could do:

`
private_tags = get_private(dicom)
`

Although in this case, the list is empty.

Customize Replacement
As we mentioned earlier, if you have a [deid settings](config.md) file, you can specify how you want the replacement to work, and in this case, you would want to provide the result ids variable from the [previous step](get.md)

Create your deid specification
For this example, we will use an example file provided with this package. Likely this will be put into a function with easier use, but this will work for now.

```
from deid.utils import get_installdir
from deid.config import load_deid
import os

path = os.path.abspath(“%s/../examples/deid/” %get_installdir())
```

The above deid is just a path to a folder that we have a deid file in. The function will find it for us. This function will happen internally, but here is an example of what your loaded deid file might look like.

```
deid = load_deid(path)
DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
deid


	{
	‘format’: ‘dicom’,
‘header’: [



{‘action’: ‘ADD’,’field’: ‘PatientIdentityRemoved’,’value’: ‘Yes’},
{‘action’: ‘REPLACE’, ‘field’: ‘PatientID’, ‘value’: ‘var:id’},
{‘action’: ‘REPLACE’, ‘field’: ‘SOPInstanceUID’, ‘value’: ‘var:source_id’}




]









}

Notice that under header we have a list of actions, each with a field to be applied to, an action type (eg, REPLACE), and when relevant (for REPLACE and ADD) we also have a value. If you remember what the deid file looked like:

```
FORMAT dicom

%header

ADD PatientIdentityRemoved Yes
REPLACE PatientID var:id
REPLACE SOPInstanceUID var:source_id
```

The above is a “coded” version of that, which has also been validated and checked. In the instruction, written in two forms:


	```
	{‘action’: ‘REPLACE’, ‘field’: ‘SOPInstanceUID’, ‘value’: ‘var:source_id’}

REPLACE SOPInstanceUID var:source_id


```

we are saying that we want to replace the field SOPInstanceUID not with a value, but with a variable (var) that is called source_id. The full expression then for value, the third in the row, is var:source_id. What this means is that when we receive our ids data structure back from get_identifiers, we would need to do whatever lookup is necessary to get that item, and then set it for the appropriate item. Eg, for the entity/item showed above, we would do:

`
ids['cookie-47']['1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947']['source_id'] = 'suid123'
`

### Add your variables
Let’s walk through that complete example, first getting our identifiers, adding some random source_id and id, and then running the function.

`
from deid.dicom import get_identifiers
ids = get_identifiers(dicom_files)
`

Let’s say that we want to change the PatientID cookie-47 to cookiemonster, and for each identifier, we will give it a numerically increasing SOPInstanceUID.

```
count=0
for entity, items in ids.items():

	for item in items:
	ids[entity][item][‘id’] = “cookiemonster”
ids[entity][item][‘source_id’] = “cookiemonster-image-%s” %(count)
count+=1


```

An important note - both fields are added on the level of the item, and not at the level of the entity! This is because, although we have an entity and item both represented, they are both represented in a flat hierarchy (on the level of the item) so the final data structure, for each item, should look like this:

```
entity = ‘cookie-47’
item = ‘1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351’

ids[entity][item]

	{‘BitsAllocated’: 8,
	‘BitsStored’: 8,h
‘Columns’: 2048,
‘ConversionType’: ‘WSD’,
‘HighBit’: 7,
‘ImageComments’: ‘This is a cookie tumor dataset for testing dicom tools.’,
‘InstitutionName’: ‘STANFORD’,
‘LossyImageCompression’: ‘01’,
‘LossyImageCompressionMethod’: ‘ISO_10918_1’,
‘NameOfPhysiciansReadingStudy’: ‘Dr. lively wind’,
‘OperatorsName’: ‘curly darkness’,
‘PatientID’: ‘cookie-47’,
‘PatientName’: ‘falling disk’,
‘PatientSex’: ‘M’,
‘PhotometricInterpretation’: ‘YBR_FULL_422’,
‘PixelRepresentation’: 0,
‘PlanarConfiguration’: 0,
‘ReferringPhysicianName’: ‘Dr. solitary heart’,
‘Rows’: 1536,
‘SOPClassUID’: ‘1.2.840.10008.5.1.4.1.1.7’,
‘SOPInstanceUID’: ‘1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351’,
‘SamplesPerPixel’: 3,
‘SeriesInstanceUID’: ‘1.2.276.0.7230010.3.1.3.8323329.5329.1495927169.580349’,
‘SpecificCharacterSet’: ‘ISO_IR 100’,
‘StudyDate’: ‘20131210’,
‘StudyInstanceUID’: ‘1.2.276.0.7230010.3.1.2.8323329.5329.1495927169.580350’,
‘StudyTime’: ‘191929’,
‘id’: ‘cookiemonster’,
‘id_source’: ‘cookiemonster-image-6’}


```


	Now we are going to run our function again, but this time providing:
	
	The path to our deid specification


	the ids data structure we updated above








### Replace identifiers
It’s time to clean our data with the deid specification and ids datastructure we have prepared.

```
path is ‘/home/vanessa/Documents/Dropbox/Code/som/dicom/deid/examples/deid’
cleaned_files = replace_identifiers(dicom_files=dicom_files,

deid=path,
ids=ids)

DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG Attempting ADDITION of PatientIdentityRemoved to image4.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Attempting ADDITION of PatientIdentityRemoved to image2.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Attempting ADDITION of PatientIdentityRemoved to image7.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Attempting ADDITION of PatientIdentityRemoved to image6.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Attempting ADDITION of PatientIdentityRemoved to image3.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Attempting ADDITION of PatientIdentityRemoved to image1.dcm.
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Attempting ADDITION of PatientIdentityRemoved to image5.dcm.
```

We can now read in one of the output files to see the result:

```
We can load in a cleaned file to see what was done
from pydicom import read_file
test_file = read_file(cleaned_files[0])

test_file
(0008, 0018) SOP Instance UID UI: cookiemonster-image-4
(0010, 0020) Patient ID LO: ‘cookiemonster’
(0012, 0062) Patient Identity Removed CS: ‘Yes’
(0028, 0002) Samples per Pixel US: 3
(0028, 0010) Rows US: 1536
(0028, 0011) Columns US: 2048
(7fe0, 0010) Pixel Data OB: Array of 738444 bytes
```

And it looks like we are good!

In this example, we did the more complicated thing of setting the value to be a variable from the ids data structure (specified with var:id. We can take an even simpler approach. If we wanted it to be a string value, meaning the same for all items, we would leave out the var:

`
REPLACE Modality CT-SPECIAL
`

This example would replace the Modality for all items to be the string CT-SPECIAL.

#### Define entity or items
For this function, if you have set a custom entity_id or item_id (that you used for the first call) you would also want to specify it here. Again, the the defaults are PatientID for the entity, and SOPInstanceUID for each item.

```
replace_identifiers(dicom_files,

ids=ids,
entity_id=”PatientID”,
item_id=”SOPInstanceUID”)


```

For more refinement of the default config, see the [developers](developer.md) docs.

## Errors During Replacement
Let’s try to break the above. We are going to extract ids, but then define the source_id at the wrong variable. What happens?

`
from deid.dicom import get_identifiers
ids = get_identifiers(dicom_files)
`

Let’s be stupid, oops, instead of source_id I wrote source_uid

```
count=0
for entity, items in ids.items():

	for item in items:
	ids[entity][item][‘id’] = “cookiemonster”
ids[entity][item][‘source_uid’] = “cookiemonster-image-%s” %(count)
count+=1


```

Try the replacement…

```
cleaned_files = replace_identifiers(dicom_files=dicom_files,

deid=path,
ids=ids)

DEBUG FORMAT set to dicom
DEBUG Adding ADD PatientIdentityRemoved Yes
DEBUG Adding REPLACE PatientID var:id
DEBUG Adding REPLACE SOPInstanceUID var:source_id
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5323.1495927169.335276
DEBUG Attempting ADDITION of PatientIdentityRemoved to image4.dcm.
WARNING REPLACE SOPInstanceUID not done for image4.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5354.1495927170.440268
DEBUG Attempting ADDITION of PatientIdentityRemoved to image2.dcm.
WARNING REPLACE SOPInstanceUID not done for image2.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5335.1495927169.763866
DEBUG Attempting ADDITION of PatientIdentityRemoved to image7.dcm.
WARNING REPLACE SOPInstanceUID not done for image7.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5348.1495927170.228989
DEBUG Attempting ADDITION of PatientIdentityRemoved to image6.dcm.
WARNING REPLACE SOPInstanceUID not done for image6.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5360.1495927170.640947
DEBUG Attempting ADDITION of PatientIdentityRemoved to image3.dcm.
WARNING REPLACE SOPInstanceUID not done for image3.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5342.1495927169.3131
DEBUG Attempting ADDITION of PatientIdentityRemoved to image1.dcm.
WARNING REPLACE SOPInstanceUID not done for image1.dcm
DEBUG entity id: cookie-47
DEBUG item id: 1.2.276.0.7230010.3.1.4.8323329.5329.1495927169.580351
DEBUG Attempting ADDITION of PatientIdentityRemoved to image5.dcm.
WARNING REPLACE SOPInstanceUID not done for image5.dcm
```

You see that we get a warning. As a precaution, since the action wasn’t taken, the field is removed from the data.

```
from pydicom import read_file
test_file = read_file(cleaned_files[0])

test_file
(0010, 0020) Patient ID LO: ‘cookiemonster’
(0012, 0062) Patient Identity Removed CS: ‘Yes’
(0028, 0002) Samples per Pixel US: 3
(0028, 0010) Rows US: 1536
(0028, 0011) Columns US: 2048
(7fe0, 0010) Pixel Data OB: Array of 738444 bytes
```

```
replace_identifiers(dicom_files,

ids=ids,
entity_id=”PatientID”,
item_id=”SOPInstanceUID”)


```

`
REPLACE Modality CT-SPECIAL
`

## Developer Replacement
If you are a developer, you can create your own config.json and give it to the function above. You can read more about this in the [developers](developer.md) notes.




            

          

      

      

    

  

    
      
          
            
  # The Deid Recipe

As we’ve discussed, the basic actions of using header filters to flag images, and performing actions on headers (for replacement), are controlled by a text file called a deid recipe. If you want a reminder about how to write this text file, [read here](config.md), and we hope to at some point have an interactive way as well (let us know your feedback!). The basic gist of the file is that we have sections. In the %header section we have a list of actions to take on header fields, and in each filter section we have lists of criteria to check image headers against, and given a match, we flag the image as belonging to the group.

In this small tutorial, we will walk through the basic steps of loading a recipe, interacting with it, and then using it to replace identifiers. If you want to jump in, then go straight to the [script](https://github.com/pydicom/deid/blob/master/examples/dicom/deid-dicom-example.py) that describes this example.

## Create a DeidRecipe
We will start with how to work with a [DeidRecipe](https://github.com/pydicom/deid/blob/master/deid/config/__init__.py) object. If you aren’t interested in this use case or just want to use a provided deid recipe file, continue to the next section.

We start by importing the class, and instantiating it.

`
from deid.config import DeidRecipe
recipe = DeidRecipe()
WARNING No specification, loading default base deid.dicom
`

Since we didn’t load a custom deid recipe text file, we get a default warning message that
a default is being use. That default is a [dicom base](https://github.com/pydicom/deid/blob/master/deid/data/deid.dicom) provided by the library. If you want to see the raw data structure that is loaded, look here:

`
recipe.deid
`

You can also double check the recipe format. We currently only support dicom, but this could in the future be other image formats.

`
recipe.get_format()
# dicom
`

Note that validation of this structure happens at load time. If something is incorrecly labeled or formatted, you will get an error message and it will fail to load. You can also provide your own deid recipe file, and in doing so, you won’t load the default. Here is one from our examples folder

`
wget https://raw.githubusercontent.com/pydicom/deid/master/examples/deid/deid.dicom
`

and in Python…

`
deid_file = os.path.abspath('deid.dicom')
recipe = DeidRecipe(deid=deid_file)
`

You can also choose to load the default base with your own recipe. In this action, the two recipes are combined, with any conflict (an overlap in the second) being given preference. For example, if the first deid you load removes a field and the second adds the same field, the final result will have it added. Keep this in mind and take care when combining recipes for this reason. Here is how it would look to load the default base and provide you custom file:

`
recipe = DeidRecipe(deid=deid_file, base=True)
`

You can also specify a different base entirely, and this would be equivalent to just providing a list of deid files:

`
recipe = DeidRecipe(deid=[deid_file1, deid_file2])
recipe = DeidRecipe(deid=deid_file1, base=True, default_base=deid_file2)
`

When we load bases, we are looking in the [data folder](https://github.com/pydicom/deid/tree/master/deid/data) provided by the module. The base is the deid.<tag> in this folder. So for example, if we wanted to use deid/data/deid.dicom.chest.xray we would specify:

```
Use dicom.xray.chest as a base
recipe = DeidRecipe(deid=path, base=True, default_base=’dicom.xray.chest’)

Use dicom.xray.chest as the only one
recipe = DeidRecipe(deid=’dicom.xray.chest’)

On top of the default base, deid.dicom
recipe = DeidRecipe(deid=’dicom.xray.chest’, base=True)
```

This data folder is to encourage sharing! It often is a lot of work to develop a criteria specific for your group or interest. If you have a general recipe that others might use, please [contribute it](https://github.com/pydicom/deid/blob/master/CONTRIBUTING.md#pull-request-process).

### Filters
The process of flagging images comes down to writing a set of filters to
check if each image meets some criteria of interest. For example, I might
create a filter called “xray” that is triggered when the Modality is CT or XR.
The filters are found in the %filter sections of the deid recipe.

First, to get a complete dict of all filters (a dictionary with keys corresponding to filter group names and values the filters themselves) we can do the following actions:

```
recipe.get_filters()

To get the group names
recipe.ls_filters()
[‘whitelist’, ‘blacklist’]

To get a list of specific filters under a group
recipe.get_filters(‘blacklist’)
```

These functions are primarily use internally to get filter lists. Do you have a good use case for wanting a function like add_filter or remove_filter? Please [file an issue](https://www.github.com/pydicom/deid/issues) and we can develop something for it.

### Header Actions
A header action is a step (e.g., replace, remove, blank) to be applied to
a dicom image header. The headers are also part of the deid recipe. You
don’t need to necessarily use header actions and filters at the same time, but since
it’s nice to keep things tidy for a single dataset using a shared file, we support having them both
represented in the same file. You could just as easily keep them in separate files to load separately - a DeidRecipe is not
required to have header actions and/or filters.

First, let’s load the default deid recipe file (deid.dicom in the data folder) that we know has a %header section.

`
recipe = DeidRecipe()
`

Here is how to get and interact with actions defined by the recipe.

```
We can get a complete list of actions
recipe.get_actions()

We can filter to an action type
recipe.get_actions(action=’ADD’)

#[{‘action’: ‘ADD’,
‘field’: ‘IssuerOfPatientID’,
‘value’: ‘STARR. In an effort to remove PHI all dates are offset from their original values.’},
{‘action’: ‘ADD’,
‘field’: ‘PatientBirthDate’,
‘value’: ‘var:entity_timestamp’},
{‘action’: ‘ADD’, ‘field’: ‘StudyDate’, ‘value’: ‘var:item_timestamp’},
{‘action’: ‘ADD’, ‘field’: ‘PatientID’, ‘value’: ‘var:entity_id’},
{‘action’: ‘ADD’, ‘field’: ‘AccessionNumber’, ‘value’: ‘var:item_id’},
{‘action’: ‘ADD’, ‘field’: ‘PatientIdentityRemoved’, ‘value’: ‘Yes’}]

or we can filter to a field
recipe.get_actions(field=’PatientID’)

#[{‘action’: ‘REMOVE’, ‘field’: ‘PatientID’},
{‘action’: ‘ADD’, ‘field’: ‘PatientID’, ‘value’: ‘var:entity_id’}]

and logically, both
recipe.get_actions(field=’PatientID’, action=”REMOVE”)
[{‘action’: ‘REMOVE’, ‘field’: ‘PatientID’}]
```

Again, if you have need for more advanced functions, please [file an issue](https://www.github.com/pydicom/deid/issues).

## Replace Identifiers

The %header section of a deid recipe defines a set of actions and associated
fields to perform them on. As we saw in the examples above, we could easily
view and filter the actions based on the header field or action type.
For this next section, we will pretend that we’ve just extracted ids from
our data files (in a dictionary called ids) and we will prepare a second
dictionary of updated fields.

In this first step, let’s import needed functions and load a set of cookie dicoms!
```
from deid.dicom import get_files, replace_identifiers
from deid.utils import get_installdir
from deid.data import get_dataset
import os

This will get a set of example cookie dicoms
base = get_dataset(‘dicom-cookies’)
dicom_files = list(get_files(base))
```

Here is the function to get identifiers

`
from deid.dicom import get_identifiers
ids = get_identifiers(dicom_files)
`

Remember, the data above probably has PHI in it (e.g., a real PatientID and at this point
you might save them in your special (IRB approvied) places, and then do some action to
provide replacement anonymous ids to put back in the data. We provide a cookie tumor example
of doing this below.

`
# Load the dummy / example deid
path = os.path.abspath("%s/../examples/deid/" %get_installdir())
recipe = DeidRecipe(deid=path)
`

We can quickly double check the actions that are defined

```
recipe.get_actions()

	[{‘action’: ‘ADD’, ‘field’: ‘PatientIdentityRemoved’, ‘value’: ‘Yes’},
	{‘action’: ‘REPLACE’, ‘field’: ‘PatientID’, ‘value’: ‘var:id’},
{‘action’: ‘REPLACE’, ‘field’: ‘SOPInstanceUID’, ‘value’: ‘var:source_id’}]


```

The above says that we are going to:



	ADD a field PatientIdentityRemoved with value Yes


	REPLACE PatientID with whatever value is under “id” in our updated lookup


	REPLACE SOPInstanceUID with whatever value is under “source_id”







We have 7 dicom cookie images we loaded above, so we have two options. We can
either loop through the dictionary of ids and update values (in this case,
adding values to be used as new variables) or we can make a new datastructure.
Let’s be lazy and just update the extracted ones

```
updated_ids = dict(); count=0
for image, fields in ids.items():

fields[‘id’] = ‘cookiemonster’
fields[‘source_id’] = “cookiemonster-image-%s” %(count)
updated_ids[image] = fields
count+=1


```

You can look at each of the updated_ids entries and see the added variables

```
updated_ids

…

‘id’: ‘cookiemonster’,
‘source_id’: ‘cookiemonster-image-2’}}


```

And then use the deid recipe and updated to create new files

```
cleaned_files = replace_identifiers(dicom_files=dicom_files,

deid=recipe,
ids=updated_ids)


```

To check your work, you can load in a cleaned file to see what was done

```
from pydicom import read_file
test_file = read_file(cleaned_files[0])

test_file
(0008, 0018) SOP Instance UID UI: cookiemonster-image-1
(0010, 0020) Patient ID LO: ‘cookiemonster’
(0012, 0062) Patient Identity Removed CS: ‘Yes’
(0028, 0002) Samples per Pixel US: 3
(0028, 0010) Rows US: 1536
(0028, 0011) Columns US: 2048
(7fe0, 0010) Pixel Data OB: Array of 738444 bytes
```

And finally, a few extra customizations for different output folders and settings.

```
Different output folder
cleaned_files = replace_identifiers(dicom_files=dicom_files,

ids=updated_ids,
output_folder=’/home/vanessa/Desktop’)

Force overwrite (be careful!)
cleaned_files = replace_identifiers(dicom_files=dicom_files,

ids=updated_ids,
output_folder=’/home/vanessa/Desktop’,
overwrite=True)


```



            

          

      

      

    

  

    
      
          
            
  # Tags

It is sometimes helpful to be able to find a particular tag. [Pydicom](https://www.github.com/pydicom/pydicom) has done a great job of providing a dictionary of tags:

`
from pydicom._dicom_dict import DicomDictionary
`

## Search By Name
and we extend that here to make it easy to find tags. For example, we can use a function to search based on name:

```
from deid.dicom.tags import find_tag
find_tag(‘Modality’)

	[(‘CS’, ‘1’, ‘Modality’, ‘’, ‘Modality’),
	(‘SQ’, ‘1’, ‘Modality LUT Sequence’, ‘’, ‘ModalityLUTSequence’),
(‘LO’, ‘1’, ‘Modality LUT Type’, ‘’, ‘ModalityLUTType’),
(‘CS’, ‘1’, ‘Equipment Modality’, ‘’, ‘EquipmentModality’)]


```

We can also limit to a particular VR, or VM:

```
find_tag(‘Modality’, VR=’CS’)
[(‘CS’, ‘1’, ‘Modality’, ‘’, ‘Modality’),

(‘CS’, ‘1’, ‘Equipment Modality’, ‘’, ‘EquipmentModality’)]


```

## Search Repeaters (Retired)
If you want to search the set of Repeats (or tags I think pydicom doesn’t use / calls retired). Then set retired=True. For example, when I search for Overlay Description the normal way I get nothing, but setting this flag returns the (old) value. This would be useful given that you need to look up a tag for an older dataset.

```
find_tag(‘Overlay Description’)

find_tag(‘Overlay Description’,retired=True)
[(‘LO’, ‘1’, ‘Overlay Description’, ‘’, ‘OverlayDescription’)]
```



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





